Intelligent throat polyp detection with separable compressive sensing
نویسندگان
چکیده
Compressive sensing can minimize the collection of redundant data in the acquisition step. However, it requires a huge amount of storage and creates a tremendous computation burden due to the size of random measurement matrix in compressive sensing theory for big data collection. The separable compressive sensing theory uses two-dimensional separable random measurement matrixes instead of a huge size of random matrix to remedy sensing matrix storage and computation complexity. In this paper, we proposed an intelligent throat polyp detection with singular value decomposition and support vector machine algorithms based on the vowel/a:/and/i:/ voices. We compared the detection effects of the proposed intelligent detection method between original voice signals and compressed signals which were collected by separable compressive sensing theory. The experimental results showed that the matrix size of original vowel voices signal could affect the correct rate of prediction. Also, the correct rate of prediction was stable under different random measurement matrix and different compressed ratio.
منابع مشابه
Throat polyp detection based on compressed big data of voice with support vector machine algorithm
Classification in large-scale data is a key problem in big data domain. The theory of compressive sensing enables the recovery of a sparse signal from a small set of linear, random projections which provides a compressive classification method operating directly on the compressed data without reconstructing for big data. In this paper, we collected the compressed vowel /a:/ and /i:/ voice signa...
متن کاملCompressive hyperspectral imaging by random separable projections in both spatial and spectral domains
An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with compressive sensing of large data, which is typical to hyperspectral imaging. The syste...
متن کاملCompressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains.
An efficient method and system for compressive sensing of hyperspectral data is presented. Compression efficiency is achieved by randomly encoding both the spatial and the spectral domains of the hyperspectral datacube. Separable sensing architecture is used to reduce the computational complexity associated with the compressive sensing of a large volume of data, which is typical of hyperspectra...
متن کاملRice Classification and Quality Detection Based on Sparse Coding Technique
Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...
متن کاملSpatial versus spectral compression ratio in compressive sensing of hyperspectral imaging
Compressive hyperspectral imaging is based on the fact that hyperspectral data is highly redundant. However, there is no symmetry between the compressibility of the spatial and spectral domains, and that should be taken into account for optimal compressive hyperspectral imaging system design. Here we present a study of the influence of the ratio between the compression in the spatial and spectr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014